
Proposal To Extend CBC Mode By “Ciphertext Stealing”
May 6, 2007

A limitation to Cipher Block Chaining (CBC) mode, as specified in [1], is that the
plaintext input must consist of a sequence of complete blocks. Although Appendix A of
[1] describes how padding methods can be used to meet this requirement, in such cases
the length of the resulting ciphertext expands over the length of the unpadded plaintext by
the number of padding bits.

This note proposes an extension of CBC mode that accepts any plaintext input whose bit
length is greater than or equal to the block size but not necessarily a multiple of the block
size. Unlike the padding methods discussed in [1], the extended mode does not expand
the size of the ciphertext. The extended mode is called Cipher Block Chaining-
Ciphertext Stealing (CBC-CS), because when padding bits are necessary, they are taken
from the penultimate ciphertext block.

Below are the specifications and diagrams for CBC-CS encryption and decryption,
building on the specification of CBC mode encryption and decryption in [1]. CBC-CS
inherits the relevant requirements of [1], e.g., on the underlying block cipher, the key, and
the initialization vector.

The following notational conventions apply to the specifications below:

• Bit strings are denoted with capital letters; integers with lower case letters.
• The block size of the underlying block cipher is denoted b.
• For a bit string X, the bit length of X is denoted len(X);
• For a bit string X and a positive integer r that does not exceed len(X), the string

consisting of the leftmost r bits of X is denoted MSBr(X), and the string consisting
of the rightmost r bits of X is denoted LSBr(X).

• For an input block B, the output block of the cipher function (“encryption”) is
denoted CIPH(B), and the output block of the inverse cipher function
(“decryption”) is denoted CIPH-1(B).

Algorithm: CBC-CS-Encrypt

Input: plaintext P, such that len(P) ≥ b; initialization vector IV.

Output: ciphertext C.

Steps:

1. Let n be the smallest integer such that n⋅b ≥ len(P), let d= len(P)-(n-1)⋅b, and let

P1, P2, … , Pn-1, Pn
* be the unique sequence of bit strings such that:

 a) P = P1 || P2 || … || Pn-1, ||Pn
*; and

b) P1, P2, … and Pn-1 are complete blocks.
Consequently, d = len(Pn

*) and 1 ≤ d ≤ b, so that Pn
* is either a complete block or

a nonempty partial block.

2. If d = b, then

a) apply CBC mode encryption with initialization vector IV to the
plaintext (P1, P2, … Pn-1, Pn

*) to produce (C1, C2, … Cn-1, Cn);
b) return C1 || C2 || … || Cn-1 || Cn.

 If d < b, go to Step 3.

3. Let PAD be the bit string consisting of b-d ‘0’ bits, and let Pn= Pn

* || PAD.

4. Apply CBC mode to the plaintext (P1, P2, … Pn-1, Pn) with initialization vector IV

to produce (C1, C2, … Cn-1, Cn).

5. Let Cn-1

* = MSB d (Cn-1).

6. Return C1 || C2 || … || Cn-1

* || Cn.

Diagram:

The following diagram illustrates CBC-CS encryption for the case that d<b:

P1

C1

⊕

P2

C2

⊕

Pn-1

⊕

Cn

⊕ IV

Cn-1
**

CIPHK CIPHK CIPHK…

Cn-1

Cn-1
*

00… Pn
*

CIPHK

Cn-1

**

Pn *

⊕
Cn-1

*

Pn

Cn-1
*

Note that, in effect, the padding of the partial plaintext block Pn

* with ‘0’ bits causes the
rightmost b-d rightmost bits of Cn-1 to be “stolen” as padding for the input to the final
invocation of the block cipher. This string of bits, denoted Cn-1

**, is omitted from the
ciphertext because it can be recovered from Cn during decryption.

 Algorithm: CBC-CS-Decrypt

Input: ciphertext C, such that len(C) ≥ b; initialization vector IV.

Output: plaintext P.

Steps:

1. Let n be the smallest integer such that n⋅b ≥ len(C), let d= len(C)-(n-1) b, and let

C1, C2, … , Cn-2, Cn-1
*, Cn be the unique sequence of bit strings such that

 a) C = C1 || C2 || … ||Cn-2 || Cn-1
* ||Cn;

b) Cn is a complete block; and
c) If n > 2, then C1,…,Cn-2, are complete blocks.

Consequently, d = len(Cn-1
*) and 1 ≤ d ≤ b, so that Cn-1

* is either a complete block
or a nonempty partial block.

2. If d = b, then

a) apply CBC mode decryption to C1, C2, … , Cn-2, Cn-1
*, Cn with

initialization vector IV to produce P1, P2, … Pn-1, Pn;
b) return P1 || P2 || … || Pn-1 || Pn.

 If d < b, then go to Step 3.

3. Let Cn-1 = Cn-1

* || LSBb-d(CIPH-1(Cn)).

4. Apply CBC mode decryption to (C1, C2, … , Cn-1, Cn) with initialization vector

IV to produce (P1, P2, … Pn-1, Pn).

5. Let Pn

* = MSB d (Pn).

6. Return P1 || P2 || …|| Pn-1 || Pn

*.

Diagram:

The following diagram illustrates CBC-CS decryption for the case that d<b. As in the
previous diagram, the “stolen” ciphertext is denoted Cn-1

**.

P1

C1

⊕

P2

C2

⊕

Pn-1

⊕

Cn

⊕ IV

Cn-1
**

CIPH-1
K CIPH-1

K CIPH-1
K …

Cn-1

Cn-1
*

Pn
*

CIPH-1
K

Cn-1

**

Pn *

⊕
Cn-1

*

[1] NIST Special Publication 800-38A 2001 Edition, Recommendation for Block

Cipher Modes of Operation, Methods and Techniques, December 2001, Natl. Inst.
Stand. Technol. [Web page], http://www.csrc.nist.gov/publications/nistpubs/800-
38a/sp800-38a.pdf.

	Proposal To Extend CBC Mode By “Ciphertext Stealing”

